This 2007 book presents a developed general conceptual and basic quantitative analysis as well as the theory of mechanical efficiency of heat engines that a level of ideality and generality compatible with the treatment given to thermal efficiency in classical thermodynamics. This yields broad bearing results concerning the overall cyclic conversion of heat into usable mechanical energy. The work reveals intrinsic limits on the overall performance of reciprocating heat engines. The theory describes the general effects of parameters such as compression ratio and external or buffer pressure on engine output. It also provides rational explanations of certain operational characteristics such as how engines generally behave when supercharged or pressurized. The results also identify optimum geometric configurations for engines operating in various regimes from isothermal to adiabatic and are extended to cover multi-workspace engines and heat pumps. Limited heat transfer due to finite-time effects have also been incorporated into the work.

The CRC Handbook of Mechanical Engineering, Second Edition

ERDA Energy Research Abstracts

"Energy for the Marketplace"

International Aerospace Abstracts

Two centuries after the original invention, the Stirling engine is now a commercial reality as the core component of domestic CHP (combined heat and power) - a technology offering substantial savings in raw energy utilization relative to centralized power generation. The threat of climate change requires a net reduction in hydrocarbon consumption and in emissions of 'greenhouse' gases whilst sustaining economic growth. Development of technologies such as CHP addresses both these needs. Meeting the challenge involves addressing a range of issues: a long-standing mismatch between inherently favourable internal efficiency and wasteful external heating provision; a dearth of heat transfer and flow data appropriate to the task of first-principles design; the limited rpm capability when operating with air (and nitrogen) as working fluid. All of these matters are explored in depth in The Air Engine: Stirling Cycle Power for a Sustainable Future. The account includes previously unpublished insights into the personality and potential of two related regenerative prime movers - the pressure-wave and thermal-lag engines. Contains previously unpublished insights into the pressure-wave and thermal-lag engines Deals with a technology offering scope for saving energy and reducing harmful emissions without compromising economic growth Identifies and discusses issues of design and their implementation

Space Power

Proceedings - Intersociety Energy Conversion Engineering Conference

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).

Mechanical Efficiency of Heat Engines

ERDA Energy Research Abstracts

Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering

Comprehensive Energy Systems
Recent Advances in M echatronics

Fundamentals of Renewable Energy Processes

Fundamentals of Renewable Energy Processes, Fourth Edition provides accessible coverage of clean, safe alternative energy sources such as solar and wind power. A ldo da Rosa’s classic and comprehensive resource has provided thousands of engineers, scientists, students and professionals alike with a thorough grounding in the scientific principles underlying the complex world of renewable energy technologies. The fourth edition has been fully updated and revised by new author Juan Ordonez, Director of the Energy and Sustainability Center at Florida State University, and includes new worked examples, more exercises, and more illustrations to help facilitate student learning. Illuminates the basic principles behind all key renewable power sources, including solar, wind, biomass, hydropower and fuel cells. Connects scientific theory with practical implementation through physical examples and end-of-chapter questions of increasing difficulty to help readers apply their knowledge. Offers completely revised content for better student accessibility. Updated with expanded coverage of such topics as solar thermal processes, hydropower and renewable energy storage technologies.

Sustainability at the Cutting Edge

“Buildings are currently a major part of the carbon emissions problem. Sustainability at the Cutting Edge indicates how they may become part of the solution. This fully updated new edition deals not only with current best practice and state-of-the-art case studies, but also with the very latest emerging technologies which will transform the relationship between buildings and energy. Professor Peter Smith describes how buildings can be made to significantly reduce their reliance on fossil-based energy by the use of solar and geothermal resources.” “Packed with useful diagrams, charts and full colour photographs, this immensely practical book is a great reference for professionals in the design and construction industry.”--BOOK JACKET.

ERDA Energy Research Abstracts

During the past 20 years, the field of mechanical engineering has undergone enormous changes. These changes have been driven by many factors, including: the development of computer technology worldwide competition in industry improvements in the flow of information satellite communication real time monitoring increased energy efficiency robotics automatic control increased sensitivity to environmental impacts of human activities advances in design and manufacturing methods. These developments have put more stress on mechanical engineering education, making it increasingly difficult to cover all the topics that a professional engineer will need in his or her career. As a result of these developments, there has been a growing need for a handbook that can serve the professional community by providing relevant background and current information in the field of mechanical engineering. The CRC Handbook of M echanical Engineering serves the needs of the professional engineer as a resource of information into the next century.

Monthly Catalog of United States Government Publications

Artificial Intelligence and Industrial Applications

Systembewertung einer industriellen Abwärmenutzung mit dem Stirlingmotor im MitteItemperaturbereich


design construction and testing of a small scale gamma type stirling engine

The Air Engine

A lucid introduction to the Stirling Engines, written primarily for laymen with little back ground in Mechanical Engineering. The book covers the historical aspects, the conceptual details as well as the brief steps in making a simple working Stirling Engine model.

Transportation Energy Conservation Data Book

Stirling Dish System Performance Prediction Model

The Ringbom engine, an elegant simplification of the Stirling, is increasingly emerging as a viable, multipurpose engine. Despite its technical elegance, high-speed stable operation capabilities, and potential as an environment-friendly energy source, the advantages manifest in Ringbom design have been slowly realized, due in large part to its often enigmatic operating regime. This book presents for the first time a clear, tractable mathematical model of the dynamic properties of the Ringbom, resulting in a theorem that offers a complete characterization of the stable operating mode of the engine. The author here details the research leading to the development of the Ringbom and illustrates theoretical results, engine characteristics, and design principles using data from actual Ringbom engines. Throughout the book, the author emphasizes an understanding of Ringbom engine properties through closed form mathematical analysis and lucidly details how his mathematical derivations apply to real engines. Extensive descriptions of the engine hardware are included to aid those interested in their construction. Mechanical, electrical, and chemical engineers concerned with power systems, power generation, energy conservation, solar energy, and low-temperature physics will find this monograph a comprehensive and technically rich introduction to Stirling Ringbom engine technology.

Handbuch Dieselmotoren

Stirling Engine Design and Feasibility for Automotive Use

This book presents a wide-ranging review of the latest research and development directions in thermal systems optimization using population-based metaheuristic methods. It helps readers to identify the best methods for their own systems, providing details of mathematical models and algorithms suitable for implementation. To reduce mathematical complexity, the authors focus on optimization of individual components rather than taking on systems as a whole. They employ numerous case studies: heat exchangers; cooling towers; power generators; refrigeration systems; and others. The importance of these subsystems to real-world situations from internal combustion to air-conditioning is made clear. The thermal systems under discussion are analysed using various metaheuristic techniques, with comparative results for different systems. The inclusion of detailed MATLAB® codes in the text will assist readers—researchers, practitioners or students—to assess these techniques for different real-world systems. Thermal System Optimization is a useful tool for thermal design researchers and engineers in academia and industry, wishing to perform thermal system identification with properly optimized parameters. It will be of interest for researchers, practitioners and graduate students with backgrounds in mechanical, chemical and power engineering.

Energy Conversion


STIRLING ENGINES ?, ?, ?, Ringbom, MANSON Engine: 18 Engines You Can Build

This book provides invaluable and detailed information on building and optimizing Stirling engines. It's clear organization and the clarity of explanations and instructions have made the original Italian language version of this book a huge success with Stirling Engine enthusiasts. All 260 pages are printed entirely in color and contain a large number of photos and illustrations. 18 of the authors' miniature engines are presented, each with a technical description, geometric characteristics and performance data, photos, and engine technical data sheets. "Excel" files for the necessary calculations can be obtained free of charge by sending an e-mail to the author. These were created by the author for each type of engines, namely Stirling Alpha, Beta, range engines, Ringbom (vertical and horizontal cylinder) and
Manson. These make it easy to both design an engine and optimize it; these calculations include all engine volumes, both functional and "dead". The text is organized so it can be understood by readers with varying degrees of knowledge; to facilitate reading, we have grouped the mathematical notes that are not essential for initial understanding at the end of the relevant chapters. The basic thermodynamic concepts are explained in these notes. The text concerns two engines types: the Stirling (including the Ringbom model, which is the best known), and the Manson, sometimes called the Ruppe! engine. There are similarities between the two theoretical cycles used in each; in one respect, however, they differ considerably: the cycle used in a Stirling engine produces mechanical energy by utilizing a gas that is hermetically sealed inside; in fact, the seal is not perfect: some inevitable minor losses occur. In contrast, the Manson is not a closed cycle. The engine that uses the Stirling cycle can be made in three configurations, generally called A, Beta, Gamma, in addition to a fourth, the Ringbom type, in which the displacer is "free", i.e., not connected to the crank mechanism. An important consideration for the Beta and Gamma types is the optimization of output power by establishing the correct ratio between the volume of the displacer and the volume of the working cylinder, factoring different temperatures. Efficiency is calculated and examined. The book begins with the Gamma type, which is the easiest to understand, then the remaining Alfa, Beta and Ringbom types, the latter a "free-piston" engine, and concludes with the Manson type.

Energy

Thermal System Optimization

Discussing methods for maximizing available energy, Energy Conversion surveys the latest advances in energy conversion from a wide variety of currently available energy sources. The book describes energy sources such as fossil fuels, biomass including refuse-derived biomass fuels, nuclear, solar radiation, wind, geothermal, and ocean, then provides the terminology and units used for each energy resource and their equivalence. It includes an overview of the steam power cycle, gas turbines, internal combustion engines, hydraulic turbines, Stirling engines, advanced fossil fuel power systems, and combined-cycle power plants. It outlines the development, current use, and future of nuclear fission. The book also gives a comprehensive description of the direct energy conversion methods, including, Photovoltaics, Fuel Cells, Thermoelectric conversion, Thermionics and MHD. It briefly reviews the physics of PV electrical generation, discusses the PV system design process, presents several PV system examples, summarizes the latest developments in crystalline silicon PV, and explores some of the present challenges facing the large-scale deployment of PV energy sources. The book discusses five energy storage categories: electrical, electromechanical, mechanical, direct thermal, and thermochemical and the storage medium that can store and deliver energy. With contributions from researchers at the top of their fields and on the cutting edge of technologies, the book provides comprehensive coverage of end use efficiency of green technology. It includes in-depth discussions not only of better efficient energy management in buildings and industry, but also of how to plan and design for efficient use and management from the ground up.

Cryocoolers

The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on "Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering". The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

Solar Energy Fundamentals and Design

This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSA M-Meknes at Moulia Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.

Stirling Engines for Low-temperature Solar-thermal-electric Power Generation

Ringbom Stirling Engines

Copyright code: 5422beab4c91abc5c2b7cc32bed423e8